Indices

PRACTICE SET 26 [PAGE 44]

Practice Set 26 | Q 1 | Page 44

Complete the table below.

Sr. No	Indices (Numbers in index form)	Base	Index	Multiplication form	Value
(i)	34	3	4	3 × 3 × 3 × 3	81
(ii)	16 ³				
(iii)		(-8)	2		
(iv)				3/7×3/7×3/7×3/7	81/2401
(v)	(-13) ⁴				

Solution:

Sr. No	Indices (Numbers in index form)	Base	Index	Multiplication form	Value
(i)	3 ⁴	3	4	3 × 3 × 3 × 3	81
(ii)	16 ³	16	3	16 × 16 × 16	4096
(iii)	(-8) ²	(-8)	2	(-8) × (-8)	64
(iv)	$\left(\frac{3}{7}\right)^4$	$\frac{3}{7}$	4	$rac{3}{7} imesrac{3}{7} imesrac{3}{7} imesrac{3}{7}$	$\frac{81}{2401}$
(v)	(-13) ⁴	- 13	4	(-13) × (-13)× (-13)× (-13)	28561

Practice Set 26 | Q 2.1 | Page 44

Find the value of 2^{10} .

= 1024Practice Set 26 | Q 2.2 | Page 44 Find the value of 5^3 . **Solution:** $5^3 = 5 \times 5 \times 5 = 125$ Practice Set 26 | Q 2.3 | Page 44 Find the value of $(-7)^4$ **Solution:** $(-7)^4 = (-7) \times (-7) \times (-7) \times (-7) = 2401$ Practice Set 26 | Q 2.4 | Page 44 Find the value of (-6)³ **Solution:** $(-6)^3 = (-6) \times (-6) \times (-6) = -216$ Practice Set 26 | Q 2.5 | Page 44 Find the value of 9^3 **Solution:** $9^3 = 9 \times 9 \times 9 = 729$ Practice Set 26 | Q 2.6 | Page 44 Find the value of 8¹ **Solution:** $8^1 = 8$ Practice Set 26 | Q 2.7 | Page 44 Find the value of $\left(\frac{4}{5}\right)$ Solution: $\left(\frac{4}{5}\right)^3 = \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}$

 $=\frac{64}{125}$

Practice Set 26 | Q 2.8 | Page 44 Find the value of $\left(-\frac{1}{2}\right)^4$

Solution:

$$\left(-\frac{1}{2}\right)^4 = -\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2}$$
$$= \frac{1}{16}$$

PRACTICE SET 27 [PAGE 45]

Practice Set 27 | Q 1.1 | Page 45

Simplify: $7^4 \times 7^2$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

 $7^4 \times 7^2$ = $7^4 + {}^2$ = 7^6

Practice Set 27 | Q 1.2 | Page 45

Simplify: $(-11)^5 \times (-11)^2$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$(-11)^5 \times (-11)^2$$

= $(-11)^{5+2}$
= $(-11)^7$

Practice Set 27 | Q 1.3 | Page 45

Simplify:
$$\left(\frac{6}{7}\right)^3 \times \left(\frac{6}{7}\right)^5$$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

CLICK HERE

🕀 www.studentbro.in

$$\begin{pmatrix} \frac{6}{7} \end{pmatrix}^3 \times \left(\frac{6}{7} \right)^5$$
$$= \left(\frac{6}{7} \right)^{3+5}$$
$$= \left(\frac{6}{7} \right)^8$$

Practice Set 27 | Q 1.4 | Page 45

Simplify:
$$\left(-\frac{3}{2}\right)^5 imes \left(-\frac{3}{2}\right)^3$$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$\begin{pmatrix} -\frac{3}{2} \end{pmatrix}^5 \times \left(-\frac{3}{2} \right)^3$$
$$= \left(-\frac{3}{2} \right)^{5+3}$$
$$= \left(-\frac{3}{2} \right)^8$$

Practice Set 27 | Q 1.5 | Page 45

Simplify: a¹⁶ ×a⁷

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

 $a^{16} \times a^{7}$

=a¹⁶⁺⁷

=a²³

Practice Set 27 | Q 1.6 | Page 45

Simplify: $\left(\frac{P}{5}\right)^3 \times \left(\frac{P}{5}\right)^7$

Solution: It is known that, $a^m \times a^n = a^{m+n}$, where m and n are integers and a is a non-zero rational number.

$$\left(\frac{\mathrm{P}}{5}\right)^3 \times \left(\frac{\mathrm{P}}{5}\right)^7$$

$$=\left(rac{\mathrm{p}}{5}
ight)^{3+7}$$

$$=\left(rac{\mathrm{p}}{5}
ight)^{10}$$

PRACTICE SET 28 [PAGE 46]

Practice Set 28 | Q 1.1 | Page 46

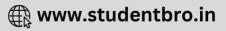
Simplify: $a^6 \div a^4$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

 $a^{6} \div a^{4}$ $= a^{6-4}$ $= a^{2}$

Practice Set 28 | Q 1.2 | Page 46

Simplify: $m^5 \div m^8$


Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

 $m^{5} \div m^{8}$ = m^{5-8} = m^{-3}

Practice Set 28 | Q 1.3 | Page 46

Simplify: $p^3 \div p^{13}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

 $p^{3} \div p^{13}$ = $p^{3 \cdot 13}$ = p^{-10}

Practice Set 28 | Q 1.4 | Page 46

Simplify: $x^{10} \div x^{10}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is non-zero rational number.

$$x^{10} \div x^{10}$$

= x^{10-10}
= x^{0}
= 1 (: $a^{0} = 1$)

Practice Set 28 | Q 2.1 | Page 46

Find the value.

 $(-7)^{12} \div (-7)^{12}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

$$(-7)^{12} \div (-7)^{12}$$

= $(-7)^{12-12}$

$$= (-7)^{0}$$

= 1 (: $a^0 = 1$)

Practice Set 28 | Q 2.2 | Page 46

Find the value.

7⁵÷7³

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

 $7^{5} \div 7^{3}$ = $7^{5 \cdot 3}$ = 7^{2} = 7 × 7 = 49

Practice Set 28 | Q 2.3 | Page 46 Find the value.

 $\left(\frac{4}{5}\right)^3 \div \left(\frac{4}{5}\right)^2$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

$$\left(\frac{4}{5}\right)^3 \div \left(\frac{4}{5}\right)^3$$
$$= \left(\frac{4}{5}\right)^{3-2}$$
$$= \left(\frac{4}{5}\right)^1$$
$$= \frac{4}{5}$$

Practice Set 28 | Q 2.4 | Page 46

Find the value.

 $4^{7} \div 4^{5}$

Solution: It is known that, $a^m \div a^n = a^{m-n}$, where m and n are integers and a is a non-zero rational number.

 $4^7 \div 4^5$ = 4^{7-5} = 4^2 = 4×4 = 16

PRACTICE SET 29 [PAGE 48]

Practice Set 29 | Q 1.01 | Page 48

Simplify: $\left[\left(\frac{15}{12} \right)^3 \right]$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{15}{12}\right)^3 \right]^4$$
$$= \left(\frac{15}{12}\right)^{3\times 4}$$
$$= \left(\frac{15}{12}\right)^{12}$$

Practice Set 29 | Q 1.02 | Page 48

Simplify: (3⁴)⁻²

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$(3^4)^{-2}$$

= $3^4 \times (-2)$
= 3^{-8}

Practice Set 29 | Q 1.03 | Page 48

Simplify: $\left(\left(\frac{1}{7}\right)^{-3}\right)^4$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left(\left(\frac{1}{7}\right)^{-3}\right)^4$$
$$= \left(\frac{1}{7}\right)^{-3\times 4}$$
$$= \left(\frac{1}{7}\right)^{-12}$$

Practice Set 29 | Q 1.04 | Page 48

Simplify:
$$\left(\left(\frac{2}{5}\right)^{-2}\right)^{-3}$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left(\left(\frac{2}{5}\right)^{-2}\right)^{-3}$$
$$= \left(\frac{2}{5}\right)^{(-2)\times(-3)}$$
$$= \left(\frac{2}{5}\right)^{6}$$

Practice Set 29 | Q 1.05 | Page 48 Simplify: $(6^5)^4$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\begin{pmatrix} 6^5 \end{pmatrix}^4$$

$$= 6^{5 \times 4}$$

$$= 6^{20}$$
Practice Set 29 | Q 1.06 | Page 48
Simplify: $\left[\left(\frac{6}{7} \right)^5 \right]^2$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{6}{7}\right)^5 \right]^2$$
$$= \left(\frac{6}{7}\right)^{5 \times 2}$$
$$= \left(\frac{6}{7}\right)^{10}$$

Practice Set 29 | Q 1.07 | Page 48

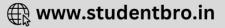
Simplify: $\left[\left(\frac{2}{3}\right)^{-4}\right]^5$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{2}{3}\right)^{-4}\right]^5$$
$$=\left(\frac{2}{3}\right)^{-4\times 5}$$
$$=\left(\frac{2}{3}\right)^{-20}$$

Practice Set 29 | Q 1.08 | Page 48 $[(5)^{3}]^{-2}$

Simplify:
$$\left[\left(\frac{3}{8}\right)\right]$$


Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{5}{8}\right)^3\right]^{-2}$$
$$= \left(\frac{5}{8}\right)^{3\times(-2)}$$
$$= \left(\frac{5}{8}\right)^{-6}$$

Practice Set 29 | Q 1.09 | Page 48 Simplify: $\left[\left(\frac{3}{4} \right)^6 \right]^1$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{3}{4}\right)^6 \right]^1$$
$$= \left(\frac{3}{4}\right)^{6 \times 1}$$
$$= \left(\frac{3}{4}\right)^6$$

Practice Set 29 | Q 1.1 | Page 48

Simplify:
$$\left[\left(\frac{2}{5}\right)^{-3}\right]^2$$

Solution: It is known that, $(a^m)^n = a^{mn}$, where m and n are integers and a is a non-zero rational number.

$$\left[\left(\frac{2}{5}\right)^{-3}\right]^2$$
$$=\left(\frac{2}{5}\right)^{-3\times 2}$$
$$=\left(\frac{2}{5}\right)^{-6}$$

Practice Set 29 | Q 2.1 | Page 48

Write the following numbers using positive indices.

$$\left(\frac{2}{7}\right)^{-2}$$

Solution:

It is known that, $a^{-m} = \frac{1}{a^m}$ where m is an integer and a is a non-zero rational number.

$$\left(\frac{2}{7}\right)^{-2}$$
$$=\frac{1}{\left(\frac{2}{7}\right)^2}$$
$$=\left(\frac{7}{2}\right)^2$$

Practice Set 29 | Q 2.2 | Page 48

Write the following numbers using positive indices.

$$\left(\frac{11}{3}\right)^{-5}$$

Solution:

It is known that, $\mathbf{a}^{-\mathbf{m}} = rac{1}{\mathbf{a}^{\mathbf{m}}}$ where m is an integer and a is a non-

zero rational number.

$$\left(\frac{11}{3}\right)^{-5}$$
$$=\frac{1}{\left(\frac{11}{3}\right)^{5}}$$
$$=\left(\frac{3}{11}\right)^{5}$$

Practice Set 29 | Q 2.3 | Page 48

Write the following numbers using positive indices.

$\left(\frac{1}{6}\right)^{-3}$

Solution:

It is known that, $\mathbf{a}^{-\mathbf{m}} = rac{1}{\mathbf{a}^{\mathbf{m}}}$ where m is an integer and a is a non-

zero rational number.

$$\left(\frac{1}{6}\right)^{-3}$$
$$=\frac{1}{\left(\frac{1}{6}\right)^3}$$
$$=\left(\frac{6}{1}\right)^3$$
$$=6^3$$

Practice Set 29 | Q 2.4 | Page 48

Write the following numbers using positive indices.

(y)⁻⁴

Solution:

It is known that, $\mathbf{a}^{-\mathbf{m}} = rac{1}{\mathbf{a}^{\mathbf{m}}}$ where m is an integer and a is a non-

zero rational number.

$$(y)^{-4}$$
$$= \frac{1}{y^4}$$
$$= \left(\frac{1}{y}\right)^4$$

PRACTICE SET 30 [PAGE 50]

Practice Set 30 | Q 1 | Page 50

Find the square root of 625.

Solution: The prime factorization of 625 is,

 $625 = \underline{5 \times 5} \times \underline{5 \times 5}$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{625} = 5 \times 5 = 25$$

 $\sqrt{625} = 25$

Practice Set 30 | Q 2 | Page 50

Find the square root of 1225.

Solution: The prime factorization of 1225 is,

 $1225 = \underline{5 \times 5} \times \underline{7 \times 7}$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{1225} = 5 \times 7 = 35$$

$$\sqrt{1225} = 35$$

Practice Set 30 | Q 3 | Page 50

Find the square root of 289.

Solution: The prime factorization of 289 is,

289 = <u>17 × 17</u>

To find the square root, we will take one number from each pair and multiply.

CLICK HERE

🕀 www.studentbro.in

$$\sqrt{289} = 17 \times 17 = 17$$

$$\sqrt{289} = 17$$

Practice Set 30 | Q 4 | Page 50

Find the square root of 4096.

Solution: The prime factorization of 4096 is,

 $4096 = \underline{2 \times 2} \times \underline{$

To find the square root, we will take one number from each pair and multiply.

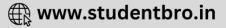
$$\sqrt{4096} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

$$\sqrt{4096} = 64$$

Practice Set 30 | Q 5 | Page 50

Find the square root of 1089.

Solution: The prime factorization of 1089 is,


 $1089 = 3 \times 3 \times 11 \times 11$

To find the square root, we will take one number from each pair and multiply.

$$\sqrt{1089} = 3 \times 11 = 33$$

 $\sqrt{1089} = 33$

